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Abstract. Recently, the first example of two-neutron decay from the ground state of
an unbound nucleus, 16Be, was seen (A. Spyrou, et. al., Phys. Rev. Lett. 108 102501
(2012)). Three-body methods are ideal for exactly treating the degrees of freedom im-
portant for these decays. Using a basis expansion over hyperspherical harmonics and
the hyperspherical R-matrix method, we construct a realistic model of 16Be in order to
investigate its decay mode and the role of the two-neutron interaction. The neutron-14Be
interaction is constrained using shell model predictions. We obtain a ground state for
16Be that is under-bound by approximately 0.7 MeV with a width of approximately 0.17
MeV. For such a system, an attractive three-body force must be included to reproduce the
experimental ground state energy.

1 Introduction

Exotic nuclei can be found across the nuclear chart, from light two-proton and two-neutron halo
nuclei, such as 17Ne and 6He, to heavy two-proton emitters, such as 45Fe, 48Ni, and 54Zn. These nuclei
can be modeled as three-body systems, a core plus two neutrons or protons, and three-body wave
functions can be used to investigate their properties as well as to give insights into their decay modes.
(See for example [1].) The difference between dinucleon decay (where two correlated neutrons or
protons decay from a nucleus) and three-body decay (where two uncorrelated nucleons decay from a
nucleus) is of particular interest.

Two-proton decay was first theorized in 1960 [2] and was then first experimentally verified over
40 years later in experiments such as [3], [4], and [5]. These systems have been analyzed in terms of
three-body models, where knowledge of their decay mechanism has led to a better understanding of
their structure [1]. Although there has been much progress in the field of two-proton decay, much less
is known about two-neutron radioactivity [6]. Recently, two-neutron decay from the continuum has
been investigated theoretically [7].

An experiment performed in 2012 at the National Superconducting Cyclotron Laboratory first
measured two-neutron radioactivity from the ground state of the unbound nucleus 16Be [8]. Although
16Be is an ideal candidate for two-neutron radioactivity (the lowest experimentally measured state in
15Be is energetically inaccessible to one-neutron decay), there was controversy over this result when
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it was first published [9]. In the original work [8], the authors used two extreme models to explain the
16Be decay - one without a neutron-neutron interaction to model three-body decay [16Be → 14Be + n
+ n] and one with two strongly correlated neutrons to model dineutron decay [16Be → 14Be + (2n)].
However, in using a three-body formulation, we can exactly treat the degrees of freedom relevant
for this decay - better understanding two-neutron decay and the neutron-neutron correlation in the
nucleus.

2 Solutions to the three-body scattering problem

To solve the Schrödinger Equation in a three-body model, interactions between the three bodies must
be defined. Typically, experimentally measured levels in the core + n system (here, 15Be) would be
used to constrain the interaction between these two bodies. However, only one level in 15Be has been
measured, at 1.8 MeV [10], and therefore, shell model calculations are used to constrain this inter-
action. Shell model calculations for 15Be [11] give a d5/2 state at 2.8 MeV, an s1/2 state at 4.0 MeV,
and a d3/2 state at 7.0 MeV. In order to match the experimentally measured state in 15Be, these shell
model levels were lowered by 1 MeV in the current work. In the three-body model, the depth of three
Woods-Saxon potentials (one for each of the s,p, and d partial waves) is adjusted to reproduce the
shell model levels.

The neutron-neutron interaction is taken to be the GPT interaction [12]. Although this interaction
is simpler than others such as AV18 [13] and Reid soft-core [14], it reproduces NN scattering ob-
servables up to 300 MeV, which is more than sufficient for the energy region considered in this work.
The GPT interaction has often been used in the study of two-neutron halo nuclei (see for example,
[15], [16], [17], and [18]). A three-body interaction can also be included in order to adjust the final
resonance energy to match the experimental value.

For the three-body system, hyperspherical coordinates, ρ and θ, are used instead of the standard
Jacobi coordinates [19]. This coordinate system allows the three-body wave function to be separated
into hyperradial and hyperangular parts (where the hyperangular function can be constructed through
a linear combination of known functions):

ΨJM =
1
ρ5/2

Kmax∑

Kγ

χJ
Kγ(ρ)YJM

Kγ (Ω5,σ1,σ2, ξ). (1)

This expansion introduces the hypermomentum, K, related to the relative angular momenta, lx and ly
[19]. Kmax determines the size of the model space.

Then, all that must be solved is the system of coupled hyperradial equations
(
− !

2

2m

[
d2

dρ2 −
(K + 3/2)(K + 5/2)

ρ2

]
− E

)
χJ

Kγ(ρ) +
∑

γ′K′
VKK′γγ′ (ρ)χJ

K′γ′ (ρ) = 0, (2)

with scattering boundary conditions

χLKKi
γγi

(κρ) → i
2

[
δKKi
γγi

H−
K+3/2(0, κρ) − SLKKi

γγi
H+K+3/2(0, κρ)

]
, (3)

where κ =
√

2mE
! . The index γ contains the quantum numbers l (total orbital angular momentum of the

two neutrons relative to the core), S (total spin of the two neutrons), j (total angular momentum of the
two neutrons relative to the core), I (the spin of the core), lx (relative orbital angular momentum of the
two neutrons), and ly (relative orbital angular momentum of the core + (2n) system). The subscript i
labels the incoming channel.
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Kmax = 48
Kmax = 52
Kmax = 56
Kmax = 60
Kmax = 64 Figure 1. Phase shifts as a function of

three-body energy of the K = 0 channel for
the largest values of Kmax used in the
calculation.

Equation (2) is solved using the hyperspherical R-matrix method [19]. Through the R-matrix
method, phase shifts can be calculated, allowing for the extraction of resonance energies and widths.

3 Preliminary Phase Shift Analysis and Future Work

In this work, energies are extracted from the phase shifts in the channel K = 0 at the points where
the energy derivative of the phase shift has a maximum. In Figure 1, we show the convergence
of the these phase shifts. This system required a large model space for convergence, including 80
hyperradial basis states, hypermomentum greater than 64, and over 80 hyperangular basis states.
For values greater than Kmax = 64, numerical inaccuracies were induced due to the strong repulsive
centrifugal barrier. By finding the peak of the derivative of the phase shifts in Figure 1, the resonance
energy was calculated to be 2.07 MeV.

This ground state energy found above is under-bound by about 0.7 MeV when compared to the
experimental ground state energy of 1.35 MeV [8]. Traditionally, three-body forces in three-body
models account for the additional binding coming from degrees of freedom that are excluded from the
model space. Here, an attractive three-body force must be added to the model in order to reproduce
the experimental ground state of 16Be.

A rough analysis of the K = 0 phase shift shows that the width is approximately 0.17 MeV.
Due to the coupled-channel nature of these calculations, the interpretation of the phase shifts is not
straightforward. Because of effects from the couplings between the channels, phase shifts do not rise
sharply through 90◦ at the resonance energy. Therefore, it is not clear whether the ground state of
the calculated system is given simply by the lowest resonance energy extracted from a single phase
shift (as computed here) or if these phase shifts have to be weighted and combined, in the case of
several resonance energies around the same region. One such method for this weighting would be to
calculate the widths of the state through an integral relationship, such as that used in [20]. A study
comparing the various approaches is underway.
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